## Chapter 31

# Fungi

PowerPoint<sup>®</sup> Lecture Presentations for

## Biology

*Eighth Edition* Neil Campbell and Jane Reece

#### Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

## **Overview: Mighty Mushrooms**

- Fungi are diverse and widespread
- They are essential for the well-being of most terrestrial ecosystems because they break down organic material and recycle vital nutrients



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

# **Concept 31.1: Fungi are heterotrophs that feed by absorption**

 Despite their diversity, fungi share key traits, most importantly the way in which they derive nutrition

- Fungi are heterotrophs and absorb nutrients from outside of their body
- Fungi use enzymes to break down a large variety of complex molecules into smaller organic compounds
- The versatility of these enzymes contributes to fungi's ecological success

- Fungi exhibit diverse lifestyles:
  - Decomposers
  - Parasites
  - Mutualists

### **Body Structure**

- The most common body structures are multicellular filaments and single cells (yeasts)
- Some species grow as either filaments or yeasts; others grow as both



- The morphology of multicellular fungi enhances their ability to absorb nutrients
- Fungi consist of mycelia, networks of branched hyphae adapted for absorption
- Most fungi have cell walls made of chitin



- Some fungi have hyphae divided into cells by septa, with pores allowing cell-to-cell movement of organelles
- Coenocytic fungi lack septa





#### (a) Septate hypha

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

#### (b) Coenocytic hypha

Specialized Hyphae in Mycorrhizal Fungi

 Some unique fungi have specialized hyphae called haustoria that allow them to penetrate the tissues of their host Fig. 31-4



(a) Hyphae adapted for trapping and killing prey





#### (a) Hyphae adapted for trapping and killing prey



- Mycorrhizae are mutually beneficial relationships between fungi and plant roots
- Ectomycorrhizal fungi form sheaths of hyphae over a root and also grow into the extracellular spaces of the root cortex
- Arbuscular mycorrhizal fungi extend hyphae through the cell walls of root cells and into tubes formed by invagination of the root cell membrane

### **Concept 31.2: Fungi produce spores through sexual or asexual life cycles**

- Fungi propagate themselves by producing vast numbers of spores, either sexually or asexually
- Fungi can produce spores from different types of life cycles











- Fungal nuclei are normally haploid, with the exception of transient diploid stages formed during the sexual life cycles
- Sexual reproduction requires the fusion of hyphae from different mating types
- Fungi use sexual signaling molecules called pheromones to communicate their mating type

- Plasmogamy is the union of two parent mycelia
- In most fungi, the haploid nuclei from each parent do not fuse right away; they coexist in the mycelium, called a heterokaryon
- In some fungi, the haploid nuclei pair off two to a cell; such a mycelium is said to be **dikaryotic**

- Hours, days, or even centuries may pass before the occurrence of karyogamy, nuclear fusion
- During karyogamy, the haploid nuclei fuse, producing diploid cells
- The diploid phase is short-lived and undergoes meiosis, producing haploid spores

- In addition to sexual reproduction, many fungi can reproduce asexually
- Molds produce haploid spores by mitosis and form visible mycelia





- Other fungi that can reproduce asexually are yeasts, which inhabit moist environments
- Instead of producing spores, yeasts reproduce asexually by simple cell division and the pinching of "bud cells" from a parent cell

Fig. 31-7

## \_ 10 μm



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- Many molds and yeasts have no known sexual stage
- Mycologists have traditionally called these deuteromycetes, or imperfect fungi

# **Concept 31.3: The ancestor of fungi was an aquatic, single-celled, flagellated protist**

 Fungi and animals are more closely related to each other than they are to plants or other eukaryotes

## **The Origin of Fungi**

 Fungi, animals, and their protistan relatives form the **opisthokonts** clade



- DNA evidence suggests that fungi are most closely related to unicellular nucleariids while animals are most closely related to unicellular choanoflagellates
- This suggests that fungi and animals evolved from a common flagellated unicellular ancestor and multicellularity arose separately in the two groups
- The oldest undisputed fossils of fungi are only about 460 million years old





Are Microsporidia Closely Related to Fungi?

- Microsporidia are unicellular parasites of animals and protists
- They have tiny organelles derived from mitochondria but not conventional mitochondria
- Molecular comparisons indicate they may be closely related to fungi



 Fungi were among the earliest colonizers of land and probably formed mutualistic relationships with early land plants
# **Concept 31.4: Fungi have radiated into a diverse set of lineages**

 Molecular analyses have helped clarify evolutionary relationships among fungal groups, although areas of uncertainty remain



Fig. 31-11a



#### Zygomycetes (1,000 species)



Fig. 31-11c

#### Fungal hypha

#### Glomeromycetes (160 species)



Fig. 31-11d

#### Ascomycetes (65,000 species)



#### **Basidiomycetes (30,000 species)**



- Chytrids (phylum Chytridiomycota) are found in freshwater and terrestrial habitats
- They can be decomposers, parasites, or mutualists
- Molecular evidence supports the hypothesis that chytrids diverged early in fungal evolution
- Chytrids are unique among fungi in having flagellated spores, called zoospores

**PLAY** Video: *Allomyces* Zoospore Release

PLAY

Video: *Phlyctochytrium* Zoospore Release



.



- Until recently, systematists thought that fungi lost flagella only once in their evolutionary history
- Molecular data indicate that some "chytrids" are actually more closely related to another fungal group, the zygomycetes; chytrids are a paraphyletic group

#### Zygomycetes

- The zygomycetes (phylum Zygomycota) exhibit great diversity of life histories
- They include fast-growing molds, parasites, and commensal symbionts
- The zygomycetes are named for their sexually produced zygosporangia
- Zygosporangia, which are resistant to freezing and drying, can survive unfavorable conditions



 The life cycle of black bread mold (*Rhizopus* stolonifer) is fairly typical of the phylum









 Some zygomycetes, such as *Pilobolus*, can actually "aim" their sporangia toward conditions associated with good food sources





- The glomeromycetes (phylum Glomeromycota) were once considered zygomycetes
- They are now classified in a separate clade
- Glomeromycetes form arbuscular mycorrhizae



## Chytrids Zygomycetes Glomeromycetes Ascomycetes Basidiomycetes

Fig. 31-15





- **Ascomycetes** (phylum Ascomycota) live in marine, freshwater, and terrestrial habitats
- The phylum is defined by production of sexual spores in saclike asci, usually contained in fruiting bodies called ascocarps
- Ascomycetes are commonly called **sac fungi**
- Ascomycetes vary in size and complexity from unicellular yeasts to elaborate cup fungi and morels



## Chytrids Zygomycetes Glomeromycetes Ascomycetes Basidiomycetes

## *Morchella esculenta,* the tasty morel



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

#### Tuber melanosporum, a truffle



## *Morchella esculenta,* the tasty morel



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

#### Fig. 31-16b **Tuber melanosporum, a truffle**



- Ascomycetes include plant pathogens, decomposers, and symbionts
- Ascomycetes reproduce asexually by enormous numbers of asexual spores called conidia
- Conidia are not formed inside sporangia; they are produced asexually at the tips of specialized hyphae called conidiophores
- Neurospora is a model organism with a wellstudied genome

```
Fig. 31-17-1
```











- Basidomycetes (phylum Basidiomycota) include mushrooms, puffballs, and shelf fungi, mutualists, and plant parasites
- The phylum is defined by a clublike structure called a **basidium**, a transient diploid stage in the life cycle
- The basidiomycetes are also called club fungi



## Chytrids Zygomycetes Glomeromycetes Ascomycetes Basidiomycetes

#### Fig. 31-18



Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
Maiden veil fungus (*Dictyphora*), a fungus with an odor like rotting meat



Fig. 31-18b



## Puffballs emitting spores

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Fig. 31-18c

## Shelf fungi, important decomposers of wood



- The life cycle of a basidiomycete usually includes a long-lived dikaryotic mycelium
- In response to environmental stimuli, the mycelium reproduces sexually by producing elaborate fruiting bodies call basidiocarps
- Mushrooms are examples of basidiocarps
- The numerous basidia in a basidiocarp are sources of sexual spores called basidiospores





SEXUAL REPRODUCTION











Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

# **Concept 31.5: Fungi play key roles in nutrient cycling, ecological interactions, and human welfare**

 Fungi interact with other organisms in many ways

- Fungi are efficient decomposers
- They perform essential recycling of chemical elements between the living and nonliving world

- Fungi form mutualistic relationships with plants, algae, cyanobacteria, and animals
- All of these relationships have profound ecological effects

- Mycorrhizae are enormously important in natural ecosystems and agriculture
- Plants harbor harmless symbiotic endophytes that live inside leaves or other plant parts
- Endophytes make toxins that deter herbivores and defend against pathogens

## **RESULTS**



Endophyte not present; pathogen present (E–P+) Both endophyte and pathogen present (E+P+)



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- Some fungi share their digestive services with animals
- These fungi help break down plant material in the guts of cows and other grazing mammals
- Many species of ants and termites use the digestive power of fungi by raising them in "farms"



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

# Lichens

 A lichen is a symbiotic association between a photosynthetic microorganism and a fungus in which millions of photosynthetic cells are held in a mass of fungal hyphae



## **•** A fruticose (shrublike) lichen



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.



## Crustose (encrusting) lichens

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

### A foliose (leaflike) lichen



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- The fungal component of a lichen is most often an ascomycete
- Algae or cyanobacteria occupy an inner layer below the lichen surface



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- The algae provide carbon compounds, cyanobacteria provide organic nitrogen, and fungi provide the environment for growth
- The fungi of lichens can reproduce sexually and asexually
- Asexual reproduction is by fragmentation or the formation of **soredia**, small clusters of hyphae with embedded algae

- Lichens are important pioneers on new rock and soil surfaces
- Lichens are sensitive to pollution, and their death can be a warning that air quality is deteriorating

- About 30% of known fungal species are parasites or pathogens, mostly on or in plants
- Some fungi that attack food crops are toxic to humans
- Animals are much less susceptible to parasitic fungi than are plants
- The general term for a fungal infection in animals is mycosis



#### (a) Corn smut on corn

(b) Tar spot fungus on maple leaves

(c) Ergots on rye

#### Fig. 31-25a







# (b) Tar spot fungus on maple leaves

Fig. 31-25c





- Humans eat many fungi and use others to make cheeses, alcoholic beverages, and bread
- Some fungi are used to produce antibiotics for the treatment of bacterial infections, for example the ascomycete *Penicillium*
- Genetic research on fungi is leading to applications in biotechnology
  - For example, insulin-like growth factor can be produced in the fungus Saccharomyces cerevisiae



Fig. 31-UN6

| Fungal<br>Phylum                                      | Distinguishing Features of<br>Morphology and Life Cycles                                                                                       |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Chytridiomycota<br>(chytrids)                         | Flagellated spores                                                                                                                             |
| Zygomycota<br>(zygote fungi)                          | Resistant<br>zygosporangium<br>as sexual stage                                                                                                 |
| Glomeromycota<br>(arbuscular<br>mycorrhizal<br>fungi) | Form arbuscular<br>mycorrhizae<br>with plants                                                                                                  |
| Ascomycota<br>(sac fungi)                             | Sexual spores (ascospores)<br>borne internally in sacs<br>called asci; ascomycetes<br>also produce vast numbers<br>of asexual spores (conidia) |
| Basidiomycota<br>(club fungi)                         | Elaborate fruiting body<br>(basidiocarp) containing<br>many basidia that produce<br>sexual spores (basidiospores)                              |

# Fungal Phylum

## Distinguishing Features of Morphology and Life Cycles

Chytridiomycota (chytrids) Flagellated spores



# Fungal Phylum

## Distinguishing Features of Morphology and Life Cycles

Zygomycota (zygote fungi) Resistant zygosporangium as sexual stage



# FungalDistinguishing Features ofPhylumMorphology and Life Cycles

Glomeromycota (arbuscular mycorrhizal fungi) Form arbuscular mycorrhizae with plants


## Fungal Phylum

## Distinguishing Features of Morphology and Life Cycles

Ascomycota (sac fungi) Sexual spores (ascospores) borne internally in sacs called asci; ascomycetes also produce vast numbers of asexual spores (conidia)



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

## FungalDistinguishing Features ofPhylumMorphology and Life Cycles

Basidiomycota (club fungi)

Elaborate fruiting body (basidiocarp) containing many basidia that produce sexual spores (basidiospores)



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

| Soil  | <i>Curvularia</i> | Plant                                      | Number of                            |
|-------|-------------------|--------------------------------------------|--------------------------------------|
| Temp. | Presence          | Mass (g)                                   | New Shoots                           |
| 30°C  | Е-                | 16.2                                       | 32                                   |
|       | Е+                | 22.8                                       | 60                                   |
| 35°C  | Е-<br>Е+          | $\begin{array}{c} 21.7\\ 28.4 \end{array}$ | 43<br>60                             |
| 40°C  | E-                | 8.8                                        | 10                                   |
|       | E+                | 22.2                                       | 37                                   |
| 45°C  | E                 | 0<br>15.1                                  | $\begin{array}{c} 0\\ 24\end{array}$ |

Source: R. S. Redman et al., Thermotolerance generated by plant/fungal symbiosis, *Science* 298:1581 (2002).

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- 1. List the characteristics that distinguish fungi from other multicellular kingdoms
- 2. Distinguish between ectomycorrhizal and arbuscular mycorrhizal fungi
- 3. Describe the processes of plasmogamy and karyogamy
- 4. Describe the evidence that multicellularity evolved independently in fungi and animals

- 5. Describe the life cycles of *Rhizopus stolonifer* and *Neurospora crassa*
- 6. Distinguish among zygomycetes, ascomycetes, and basidiomycetes
- Describe some of the roles of fungi in ecosystems, lichens, animal-fungi mutualistic symbioses, food production, and medicine and as pathogens